Local Antimagic Vertex Coloring of Corona Product Graphs P n ∘ P k
نویسندگان
چکیده
منابع مشابه
Total vertex irregularity strength of corona product of some graphs
A vertex irregular total k-labeling of a graph G with vertex set V and edge set E is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. The total vertex irregularity strength of G, denoted by tvs(G)is the minimum value of the largest label k over all such irregular assignment. In this paper, we study the to...
متن کاملtotal vertex irregularity strength of corona product of some graphs
a vertex irregular total k-labeling of a graph g with vertex set v and edge set e is an assignment of positive integer labels {1, 2, ..., k} to both vertices and edges so that the weights calculated at vertices are distinct. the total vertex irregularity strength of g, denoted by tvs(g)is the minimum value of the largest label k over all such irregular assignment. in this paper, we study the to...
متن کاملEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
متن کاملTotal coloring of corona product of two graphs
A total coloring of a graph is an assignment of colors to all the elements (vertices and edges) of the graph such that no two adjacent or incident elements receive the same color. In this paper, we prove the tight bound of the Behzad and Vizing conjecture on total coloring for the corona product of two graphs G and H , when H is a cycle, a complete graph or a bipartite graph.
متن کاملThree complexity results on coloring P k - free graphs I
We prove three complexity results on vertex coloring problems restricted to Pk-free graphs, i.e., graphs that do not contain a path on k vertices as an induced subgraph. First of all, we show that the pre-coloring extension version of 5-coloring remains NP-complete when restricted to P6-free graphs. Recent results of Hoàng et al. imply that this problem is polynomially solvable on P5-free graph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in computer science research
سال: 2022
ISSN: ['2352-538X']
DOI: https://doi.org/10.2991/acsr.k.220202.014